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0. Abstract.

We address the problem of finding a minimum weight base B of a
matroid when, in addition, each element of the matroid is colored with one of
m colors and there are upper and lower bound restrictions on the number of
elements of B with color i, for i = 1, 2, ..., m. This problem is a special
case of matroid intersection. W an algorithmr pl~oit' -  a,,,-

special structure, and we apply kto two optimization problems on graphs.
When applied to the weighted bipartite matching problem, aukalgorithm has
complexity O(IEI LVI + IV12 log IlV). Here V denotes the node set of the
underlying bipartite graph, and E denotes its edge set. The second
application is defined on a general connected graph G = (V, E) whose edges
have a weight and a color. 6 ne seeks a minimum weight spanning tree with
upper and lower bound restrictions on the number of edges with color i in
the tree, for each i. Our algorithm for this problem has complexity
O(IEI IVI + n IVI + m IVI . A special case of this constrained spanning tree
problem occurs when V* is a set of pairwise nonadjacent nodes of G. One
must find a minimum weight spanning tree with upper and lower bound
restrictions on the degree of each node of V*. Then the complexity of our
algorithm is O(IVl IEI + IV*l JV12). Finally, we discuss a new relaxation of the
traveling salesman problem.

1. Introduction.

Let E be a finite set, M a matroid of rank r defined on E, and
w: E - R a weight function. The weight of a subset F C E is defined by on F oron For

w(F) = X(w(e) e e F). Let E1, E2, ..., Em be a partition of E into nonempty A .

subsets. To each Ei assign two integers I and ui (Ii_< ui). We address the 3
problem of finding a base B of M which will I.Laflouz.ced -

J,4;)V& at 10 &4.tVj
minimize w(B)

subject to By
Dist ribut ion/ __
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I s IBc n EIu i  for i - 1, 2, ..., m.
This problem is denoted by (P). Since a base B cannot contain loops, we
assume without loss of generality that M is loopless.

It is known that the set
B3*={XE: Ij_<lXnEjlju, i= t,2,...,m, IXl~r}

is the family of bases of a matroid M', which has rank r. Such a matroid is
called a generalized partition matroid. Thus, (P) is the problem of finding a
minimum weight common base of M and M', if one exists.

This problem has been solved in polynomial time by Edmonds ([El] and
[E2]). The algorithm presented here takes advantage of the special structure
of the matroid M' and works on an auxiliary digraph with m nodes, instead
of the n = IEI nodes required by the general matroid intersection algorithms.
This leads to a complexity of O(r(nc + m log m)), where c is the complexity
of circuit finding. By circuit finding we mean the following: Given
independent set I and e e E - I, list the elements of the unique circuit in
I u {e}, or show that I u (e) is independent. This complexity is to be
compared with the O(nr(r + c + log n)) required by the general algorithm (see
Brezovec, Cornu6jols, and Glover ([BCG])).

To make this paper self-contained, we state without proofs some of
the results of [BCG]. This is done in Section 2. The algorithm for solving (P)
is presented in Section 3. We discuss its complexity in Section 4 and some
variants of the algorithm and a postoptimizing procedure in Section 5.

Finally, in Sections 6 and 7, we provide two examples of how our
algorithm may be applied to classical combinatiorial optimization problems.
For the weighted bipartite matching problem on a graph G = (V, E), we get an
algorithm of complexity O(IVl IEI + IV12 log IlV), which is the best known for
weighted bipartite matching (see Fredman and Tarjan [FT]). Note that the
general matroid intersection algorithm only gives a bound of O(IEI IV12).

In Section 7, we consider the case where M is the graphic matroid
associated with a connected graph G = (V, E). In this case, our algorithm can
be made to run in time O(IV IE + IVl2 m + IVI M2). We also consider the
following problem. Let V* = {(p ,2, .... Um-i) denote a stable set of G (a set

--
' I.
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of pairwise nonadjacent nodes). Let Ei consist of the edges incident with
node -)i for i - 1, 2, ..., m-1, with Em containing all remaining edges. A
minimum weight spanning tree of G must be found with the property that,
for i = 1, 2, ..., m-1, the number of edges incident with ui belongs to the
interval [Ii, ui]. This is of complexity O(IVI IEI + m IV12)). Note that, here as
well, the general matroid intersection algorithm only gives a bound of
O(IEI IV12). If Ii = u, = 2 for i = 1, 2, ..., m-I, the complexity can be further
reduced to O(m(IEI + m IVI) + IEI log IVi), and such degree restricted spanning
trees can be used to strengthen the 1-tree relaxation of Held and Karp for the
Traveling Salesman Problem. We also show how this relaxation can be
further strengthened and generalized to the case where V* is not a stable
set.

2. Known results

Most of the material in this section can be found in standard
references such as [W] (Proposition 1 below is Exercise 2 on page 15 of [W])
or [L] (Theorem 2 below is similar to Theorem 9.4 of Chapter 8 in [L]).
However, for the purpose of this paper, we find it more convenient to follow
the framework developed in [BCG].

Let M be a matroid defined on the element set E, and let B be a base
of M. Consider 13 B and 3' E - B such that 1131 = 113'!. We say that (13, 13')
is a B-swap if (B - 13) u 13' is a base of M. We call m(3, A') a matching if

it represents a one-to-one mapping of 13 onto 13'; m(D3, 13') is called a
B-matching if every (e, e') in m(13, 13') is a B-swap.

Proposition 1. [BCG, Lemma 2]. Let B and B' be two bases of M, and let
= B - B' and 13' = B' - B. Then there is at least one B-matching of (13,13').

*9'* i~. . . 1p ' P f ~ ~ ~ .'~' ~ ' 9~ .''~ v%
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Consider two matroids M, and M2 defined on the same finite element
set E, and let I C E be a k-intersection, that is, let I be independent in Mi
and M2 such that III = k. Let w: E -+ R be a weight function. The problem of
finding a minimum weight k-intersection is denoted (Pk)" To solve (Pk),
define a bipartite auxiliary digraph G(I) as follows. The nodes of G(I) are
partitioned into V and V'. Construct a node in V for each e e I and a node
in V' for each e' e E - I. For each e e 1, we construct an arc (e, e') with
weight w(e, e') = w(e') - w(e) provided (I - {e}) u {e'} is independent in Mi.
Similarly, for each e' e E - I, we construct an arc (e', e) with weight
w(e', e) = 0 provided (I - {e}) u {e') is independent in M2.

Let C be a directed cycle in G(I). In this paper, directed cycles (or
dicycles, for short) can have repeated nodes but no repeated arcs. We define
the weight of a dicycle to be the sum of the weights of the arcs in the
dicycle.

Theorem 1. [BCG, Theorem 3]. Assume I is a k-intersection.
(i) I is optimal for (Pk) if and only if there are no negative weight

dicycles in G(I).
(ii) Let C be a negative weight dicycle in G(I) with no negative

weight dicycle on a subset of its nodes, and let I and r be the nodes of C
in V and V', respectively. Then I' = (I - Z).u E is a k-intersection such
that w(I') < w().

This theorem leads to an algorithm for solving (Pk), given an initial
k-intersection I: use G(I) to find an improved solution; continue until a
G(I) is found which has no negative weight dicycles.

We modify this technique to develop a dual algorithm. Consider a set
A of k artificial elements, where E n A = 0. Let F = E u A and define two
matroids MI(F) and M2(F) on the element set F as follows. For i = 1, 2,
I C E and J L A, the set I u J is independent in Mi(F) if and only if I is
independent in Mi.The problem (Pk) relative to these new matroids is
denoted (PkI F). In order to define (Pk F) completely we need to assign

,

a-
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weights to the artificial elements. By giving them large negative weights,
we can guarantee that A is an optimal k-intersection for (Pk F).

Define the digraph Sp(I) from G(I) by splitting one of the nodes
arising from an artificial element, say a e A, into a source node s and a
destination node d. Let the arcs out of s in Sp(l) be those out of a in G(I)
and the arcs into d in Sp(i) be those into a in G(I). The following result
provides the foundation for an algorithm to solve (Pk)"

Theorem 2. [BCG, Theorem 5]. Let I be optimal for (Pkj H), where
E C_ H £_ F, and let Sp(I) be obtained from G(I) by splitting an artificial
element a into s and d.

(i) Problem (Pk H - a) has no solution if and only if there is no
s-d dipath in Sp(I).

(ii) Let P be a minimum weight s-d dipath such that every
s-d dipath defined on a subset of its nodes has a strictly larger weight, and
let I and r be the nodes of P in V and V', respectively. (s and d both
give rise to a in _.) Then I' = (I - E) u r is optimal for (Pkj H - a).

We use this to solve (Pk) as follows. Start with H = F and the set
I = A. Construct G(I) and then Sp(i) by splitting one node arising from an
artificial element a. Find a minimum weight dipath from the resulting
source s to destination d, with the added condition that every s-d dipath
on a proper subset of its nodes has a strictly larger weight. Then the set I'
defined in Theorem 2(ii) is optimal for (PkI H - a). Repeat this process with
I' in place of I and H - a in place of H, until all artificial elements have
been split. When this occurs, we have an optimal solution for (Pk).

I.

We close this section with a result that will be useful in the proof of
Theorem 6.

Theorem 3. [BCG, Corollary]. Let e e V and e'e V'.
(a) If P is an e-e' dipath in Sp(I) and (I - _) u Z' is a dependent set
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in M1, then there is an e-e' dipath Po in Sp(I) such that the intermediate
nodes of Po constitute a proper subset of those of P, and w(Po) < w(P).

(b) If P is an e'-e dipath in Sp(I) and (I - Z) u V is a dependent set
in M2 , then there is an e'-e dipath P. in Sp(I) such that the intermediate
nodes of Po constitute a proper subset of those of P, and w(Po) < w(P).

3. The Algorithm

In this section we show how to solve (P). We first assume that a
feasible solution B is available.

For convenience, we index each element of E to identify the subset or
state of the partition E,, E2, ..., Em to which it belongs. Thus, ei and fi are
elements of E, and Ei, respectively. Also, the symbol ' is used to denote
that an element is not in base B, so that ej e B but e,' e E - B.

We define the state digraph of B, denoted S(B), as follows. The
node set is {v, v2, ... , Vm), where node vi corresponds to state i,
i = 1, 2, ..., m. For each ei e B we construct an arc a(ei, ej') with weight
w(a(e i, ej')) = w(e') - w(ei) directed from node vi to node vj provided
(ei, el') is a B-swap. We call these the forward arcs of S(B). Note that, in
general, the digraph S(B) can have loops and parallel arcs. For each
ej' e E - B, construct a(ej', e) from vj to v,, with weight 0, provided
(B - {el}) u {el'} does not violate the cardinality conditions of E, and Ej. We
call these the backward arcs of S(B). Note that the existence of a
backward arc from v, to v, indicates that we can exchange g element
e, r B n E, for s element e,' E (E - B) r- E without violating the

p'.

cardinality conditions on B r) E, and B n Ej. All such backward arcs a(ej', el)
appear in parallel in S(B).

We could have constructed S(B) using G(B), the bipartite auxiliary
digraph discussed in the previous section, as follows. Let M1 = M and let M2

be the matroid whose bases are elements of the set

I
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iB*={ X E: li:5 X nEil:5u i, i=- 1, 2,.,m JXl r).

Construct G(B) as explained in Section 2. Consider, for i = 1, 2, ..., m, the
set of nodes of G(B) corresponding to Ei and identify this set as the node
v,. Thus, each arc (ei, e') or (f,', f) of G(B) becomes an arc joining vi to
Vj, and this new digraph is clearly S(B).

Lemma 1. Let C be a dicycle of S(B). Either C is of the form
{a(e i, ej'), a(ej', ek), ..., a(eI, eq'), a(eq', e)} ()

or there exists a dicycle of S(B) of the form (*) with the same forward arcs
as C (and, therefore, the same weight as C). Furthermore, there is a
one-to-one correspondence between the dicycles of S(B) having the form (.)
and the dicycles of G(B).

Proof. There are four ways in which C could fail to have the form (*): C
could contain, as subsequences,

(i) consecutive forward arcs {a(e, ej'), a(fj, ek')),

(ii) consecutive backward arcs {a(e', e), a(fj', ek)),
(iii) a forward-backward pair with different elements from E - B,

" {a(e i, ej'), a(fj', ek)), or
(iv) a backward-forward pair with different elements from B,

{(a(ej', fk), a(ek, el')}.

In case (i) the loop a(e,', fi) must be a backward arc in S(B) since swapping
these two elements in B will not change 1B n Ejl. So replace the
consecutive forward arcs in C with {a(e i, ej'), a(ej', f), a(fj, ek')). (Recall
that we only require dicycles to be arc-disjoint; so loops are permitted.)

Assuming i, j, and k to be distinct, the result of the consecutive
backward arcs in case (ii) is that the cardinality of Ei increases by one in
(B - {ej, ek}) u {e,', fj'}, with the cardinality of Ek decreasing by one. E-
realizes no change in cardinality from this subsequence. Thus, a(ei', ek)

,. must be a backward arc in S(B), and we can replace the consecutive
backward arcs in case (ii) with the single backward arc a(ei', ek). Note that
the same replacement is appropriate if any of the indices are not distinct.

S ,.o : . .: ..: ..- ., , - <,: - z5 - -; z., ,- -• '°" '
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In case (iii), the backward arc a(fl', ek) can be replaced with the
parallel arc a(ej', ek). Similarly, a(ej', fk) can be replaced with a(ej', ek) in
case (iv).

Since these sters (which result in a dicycle that has the form (*)) only
affect the backward arcs in the dicycle, the weight of the dicycle remains
unchanged.

The second statement in Lemma 1 is immediate. /

Define
P(C) = {ei B: a(e i, ej') is a forward arc of C), and
13'(C) = (e,' e E - B: a(e i, ej') is a forward arc of C).

Theorem 4. Assume B is feasible for (P).
(i) B is optimal for (P) if and only if there are no negative weight

dicycles in S(B).
(ii) Let C be a negative weight dicycle in S(B) with no negative

weight dicycle D satisfying 13(D) C P(C) and 1'(D) C 5'(C). Then
IT = (B - D(C)) u 1'(C) is a base such that w(B') < w(B).

Proof. This result follows directly from Lemma 1 and Theorem 1.

Theorem 4 shows the equivalence of solving (P) and finding negative
weight dicycles in S(B). This gives the foundation for a primal algorithm:
start with a feasible B and use S(B) to find an improved solution. Continue
in this manner until an S(B) is found with no negative weight dicycles.

We briefly discuss the complexity issues of this algorithm: Firstly,
one must be able to find a negative dicycle in S(B) with the required
property. Also, the number of iterations needed to reach the optimal solution
can be relatively large; even though each iteration yields a better solution,
the improvement may be slight. For these reasons the complexity is high,
and we do not pursue our investigation of this primal algorithm. (We do note,
however, that this approach may have merits in the context of sensitivity

Il

,'t,, .'. ,' ' ' '' ',',.', ,.J
. .. ' ' , , .' ' , . , ,

, ' ' ' , ; '',' ' ", 2
.

, .... ".2,,, . , '.''..'..'. ..... ,.,'.%-°,-; .- ,- 5
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analysis: Given an optimal solution for a certain set of weights,
reoptimizing on a perturbed set of weights using this method may be more
efficient in practice than starting from scratch, as other algorithms for
matroid intersection would require.)

Instead we use these results to develop a dual algorithm. First, using
a modification of the greedy algorithm, we can find an initial solution B0.
Start with Bo = 0 and, at each iteration, add an element e e E - B0 to BO if

(i) B0 u {e) is independent in M,
(ii) e has the smallest weight of all f e E - B0 satisfying (i), and
(iii) 1(B0 u {e)) n Eil< u, for i = 1, 2,..., m.

Stop when either no such e can be found, 1B01 -r, or, for the e chosen,
r - 1B0 u {ell < 7X{max(I i - I(B0 u {el) r) Eil, 0): i = 1, 2, ..., ml

(in which case e should not be added to B0). Violating this last condition
would result in a B0 which could not satisfy both 1B01 = r and all lower
bound conditions. At the termination of this procedure we clearly have the
least weight independent set with 1B0 elements.

Note that B0 contains at least one element. If 1B01 = r, (P) is solved.
Otherwise, consider a set A of r - 1B01 artificial elements, where
E n A = 0. We assign to each artificial element a state as follows. Extend
El by unioning max{0, 1, - B0 r Elj) artificial elements. Then extend
E21, E3, ..., Em similarly. Any remaining artificial elements can then be
unioned to any of the states, as long as the resulting states satisfy
I(Bo u A) r Ell < ui.Note that, if this cannot be done, (P) is infeasible.

Let F = E u A and define a matroid M(F) on the set F as follows: for
I C_ E and J A, I u J is independent in M(F) if and only if I is independent
in M. The problem (P) relative to M(F) will be denoted (PI F); we now wish .-

to find the least weight independent subset B of F such that

i -IB13 Ell 5 ui, for i = 1, 2, ..., m, and IBI = r.

To define (PI F) completely we need to assign weights to the artificial
elements. We will give large negative weights to all artifirial elements.
Thus, the initial solution B B0 u A wiii b,! optimal for (PI F).

" If
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Define the digraph S*(B) from S(B) by creating two nodes, a source
node s and a destination node d, from an artificial element, say a e A. We
also allow s and d to denote the resulting elements. Assume a was
assigned to E,. Replace arcs of the form a(a, e,') in S(B) with arcs a(b, e,')
in S*(B), and replace arcs of the form a(el', a) in S(B) with a(el', d) in
S*(B).

Note that we could have constructed S*(B) by forming Sp(B) from
G(B), and then shrinking groups of nodes (excluding s and d) corresponding
to each of the states into the nodes v, v2, ... ,vm. Thus the following theorem
is a direct result of Theorem 2. For any s-d dipath P in S*(B), define

13(P) = {ei E B: a(e i, ej') is a forward arc of P}, and
13'(P)= {ej' E E - B : a(e i, ej') is a forward arc of P}.

Theorem 5. Let B be optimal for (PI H), where E C H C F, and let S*(B) be
obtained from S(B) by creating s and d from artificial element a.

(i) Problem (PI H - a) has no solution if and only if there is no
s-d dipath in S*(B).

(ii) Let P be a minimum weight s-d dipath such that every
s-d dipath Q satisfying 13(Q) C 13(P) and 13'(Q) C 13'(P) has a strictly larger
weight. Then B' = (B - 3(P)) u 13'(P) is optimal for (PI H - a).

Theorem 5 provides the foundation for our algorithm. Start with H = F
and B = Bo u A, which is optimal for (PI F). Construct S(B) and then S*(B)
by creating s and d from artificial element a. Find a minimum weight i
s-d dipath P such that every s-d dipath Q satisfying 13(Q) C 3(P) and

13'(Q) c 13'(P) has a strictly larger weight. Then the set B' defined in
Theorem 5(ii) is optimal for (PI H - a). Repeat this process with B' in place
of B and H - a in place of H, until the resulting B' contains no artificial
elements. At this step, B' is optimal for (P).

The complexity of the algorithm depends on our ability to find a
minimum weight s-d dipath in S*(B) with the added restriction stated in
Theorem 5(ii). We concentrate on this issue in the next section. MIN

'I:

.S";

A_ ,
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4. Complexity of the Algorithm.

Note that the arc weights of S(B o u A) are all nonnegative. To see
this, first consider arcs of the form a(a, ej'), where a is artificial. Since
w(x) has been chosen small enough, w(a(c, e,')) = w(e,') - w(a) > 0. Now
consider an arc a(e i, ei'), where ei e B0 . Since this arc is in S(BO u A), we
have (Bo - {ei}) u {e,'} independent in M. But then w(e) < w(ej') by
requirements (i) and (ii) of our modified greedy approach in the construction
of B.; so w(a(e i, e,')) > 0. Finally, when e is not in Bo u A, w(a(e, f)) = 0.

All arc weights nonnegative in S(B o u A) implies the same for
S*(B o u A); so no minimum weight s-d dipath will repeat nodes. Thus, for
all pairs of nodes, we only need to consider the arc of minimum weight
joining vi to v, when searching for the minimum weight s-d dipath, and we
can apply Dijkstra's algorithm to find such an s-d dipath P. Furthermore,
the requirement that every s-d dipath Q satisfying P(Q) C P3(P) and
P'(Q) c P'(P) has a strictly larger weight can be obtained by adding a small
positive e to all the arc weights of S*(B o u A).

We now show that nonnegative weights on the arcs of S(B) can be
preserved throughout the algorithm. Define a variable D(vi) associated with
every node of the digraph S*(B) and a reduced weight

w'(a(e, ej')) = w(a(e i, ej')) + D(vi) - D(v,)
associated with each forward arc of S(B). Similarly, for each backward arc
define

w'(a(ek', el)) = D(Vk) - D(v).
Note that, in terms of the reduced weights, the length of an s-d dipath P is
w'(P) = w(P) + D(s) - D(d) since, for any intermediate node vi, the variable
D(vi) cancels out on the two arcs of P that contain vi. Since D(s) - D(d) is
a constant that does not depend on P, it is equivalent to solve the minimum
weight s-d dipath problem in S*(B) with the reduced weights w' instead
of the original weights w. We provide a choice for the variables D(vi) that
guarantees nonnegative reduced weights from one iteration to another in the
next theorem.
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Theorem 6. Let B be optimal for (PI H) where E _ H C F, and assume that
an s-d dipath exists in S*(B). Set D(vi) to be the weight of a minimum
weight s-v i dipath in S*(B), for i = 1, 2, ..., m. If there is no s-v i dipath, set
D(vi) = M, where M is some large constant. Let B' be as defined in
Theorem 5(ii). Then, the reduced weights w'(a(ek', ej)) = D(Vk) - D(v) and
w'(a(e i, ej)) = w(a(e i, ej')) + D(vi) - D(v) are nonnegative for every backward
arc a(ek', el) and every forward arc a(e i, ej') of the digraph S(B') for
problem (PI H - a).

Using the same argument as in Lemma 1, we can show that, for every
s-d dipath P in S*(B) which does not have the form

{a(s, ei' ) , a(ei', ej), a(ej, ek') , .... ,a(e,', d)),(* )

there is an s-d dipath of the form (**) with the same forward arcs and,
hence, the same weight as P.

For the proof of Theorem 6 we need the following proposition, which is
a direct result of Theorem 3. We also need to extend the definitions of P(P)
and f'(P) to u-v dipaths P, where u and v are general nodes of S*(B):

P(P) = {ei e B: a(e i, ej') is a forward arc of P,

or a(ek', el) is the last arc of P), and
1'(P) = {ej' e E - B : a(e i, ej') is a forward arc of P,

or a(ej', ek) is the first arc of P).

Proposition 2. Let P be a minimum weight s-d dipath in S*(B) such that
every s-d dipath Q satisfying P(Q) Cz P(P) and 0'(Q) Cz 1'(P) has a strictly

*, larger weight than P, and let Po be some subpath of P.
(a) If the first and last arcs on Po are forward arcs, then

[B - 1(Po)] u 1'(Po) is independent in M.
(b) If the first and last arcs on Po are backward arcs, then

[B - 1(Po)] u 1'(Po) satisfies the cardinality conditions on each Ei.

Proof of Theorem 6. First we show that the choice for D(vi) gives
nonnegative reduced weights on the arcs of S(B). Consider a(e i, ej') in S(B),

,'Z .,--"- .' . '." ". ".- 1 % "- -" " .- ,€ - % ".-"," ." .,""¢ -. '',#L ".' ,.e,, '-'¢ 
"r .
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and suppose w(a(e i, el')) + D(vi) - D(vl) < 0. This gives
D(vi) + w(a(e i, e')) < D(vj),

which implies that the minimum weight s-v, dipath together with the arc
a(ei, ej') gives a smaller weight from s to vj than D(vj), a contradiction.
Similarly, for each backward arc a(fi', f1) in S(B),
w(a(fi', fj)) + D(vi) - D(vj) _ 0. Thus, our choice of D(vi) gives nonnegative

reduced weights on the arcs of S(B).

Let P be the minimum weight s-d dipath that yields B' in
Theorem 5(ii), and let Pi be the subpath of P from s to some node vi. Let '

131(i) and 1'(i) be the sets of elements of B and E - B, respectively,
represented by the forward arcs of Pi, and let 132(i) and 132'(i) be the
corresponding sets of elements represented by the backward arcs of P,. By
Proposition 2, B1 (i) = B - 01(i) + 1,'(i) is independent in M, and
B2(i) = B - 32(i) + 32 (i) satisfies the cardinality conditions on each Ei.For
ease of notation we allow v to represent s and d, as well as the nodes
representing states E, E21, ..., Em.

We construct a digraph Ni as follows. The node set of Ni is that of
S(B). If B1 (i) - ej + ek' is independent in M, then a(ej, ek') is a forward arc
of N,; if B2(i) - ej + ek' satisfies the cardinality conditions of each E, then
a(ek', e) is a backward arc of Ni.Note that, in the latter case, we call
(ek', ej) a B2(i)-swap with respect to the partition matroid.

We will show that this choice of D(vi) gives nonnegative reduced
weights on the arcs of Ni by induction on the nodes of P, starting from
vi = s. Note that when we reach vi = d, we will have Ni = S(B) for (PI H -a),
and the theorem will be proved.

When vi = s, Ni = S(B), and the result has been proved above. Let vi be
a node of P for which the result holds, and let v, be the node following vi
in P. There are two cases to consider, as the arc joining v, to vj can be a
forward arc or a backward arc.

Suppose the arc joining vi to vj in P is a forward arc a(e i, el'). In
this case the backward arcs of Nj are the same as those of Ni; hence, they I°

• 
'S'S
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have nonnegative reduced weights by induction. Thus, we only need to show
D(Vq) - D(vp) w(eq') - w(ep) for every B31(j)-swap (er, e,'). Note that if
(ep3 eq') is also a B,(i)-swap we are done. So only consider B31(j)-swaps
which are not B31(i)-swaps.

If (ep, eq') = (ej', el), then
D(v1) - D(v1) +, w(ej1) - w(e~)(t

since a(ei, ej') is on the minimum weight s-d dipath P, and the desired
inequality is immediate.

For the remaining cases, consider B* = B1(i) -e + ej' -e + eq', which
is independent in M. Suppose ep - el'and eq' * ei. Then B* = 131(i) - ei + q
and (el, eq') is a B,(i)-swap. Therefore, w(eq') - w(e1) + D(v5) - D(vq) :0 by
induction. Combining this inequality with (t) and ep - e,, we get
w(eq') - w(ed) + D(vP) - D(vq) 0, and the result follows. A similar argument
applies when ep * ej' and eq' = ei.

Finally, suppose e~ P ej' and eq' # ei. Since (en, eq') is not a
B,(i)-swap, yet B* is a base, it follows from Proposition 1 that both
(er, e,') and (e,, eq') are B,(i)-swaps. Thus, w(e1') - w(ep) + D(vp) - 0(vj) 0,
and w(eq') - w(e1) + D(e1) - D(eq) :0. Summing these inequalities and applying

(t.we get w(eq') - w~ep) + D(vp) - D(Vq) :0.
Now suppose the arc joining vi to vj in P is a backward arc a(fi', fS)*

Then 116) = 131(i), and the forward arcs of N1 are the same as those of Ni.
Hence, they have nonnegative reduced weights by induction. Thus, we only
need to show D(vp) - D(Vq) :0 for every B2(j)-swap (er', eq). Note that if
(ep' eq) is also a B2(i)-swap we are done by induction. So only consider r
B32(j)-swaps which are not B2(i)-swaps.

if (e '1 eq) = (fj, fi'), then
D(vj) = 0(v1) (f

since a(f1', f.) is on the minimum weight s-d dipath P, and the desired
inequality is immediate.

For the remaining cases consider B** = 1320) - fi + fi' - eq + ep', which
satisfies the cardinality conditions for each Ei since (en', eq) is a C

B32(j)-swap. Suppose e ' f. and eq . Then B** =13 2(0) - eq + fi1, and
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(ft', eq) is a B2(i)-swap. Hence, D(vi) - D(Vq) >_ 0 by induction. This and
equation (tt) show that D(vp) - D(Vq). The proof is similar when ep' * f, and
eq f"

Finally, suppose ep' f, and eq * f,'. Since (ep', eq) is not a
B2(i)-swap, yet B** is independent in the partition matroid, it follows from
Proposition 1 that both (ep', fj) and (fi', eq) are B2(i)-swaps. Thus,
induction yields D(vp) - D(vj) 0 and D(vi) - D(vq) > 0. Summing these
inequalities and applying (tt), we get D(vp) - D(Vq) _ 0. H

We now summarize the complexity of the algorithm. O(r) iterations
will be needed, bne iteration for the removal of each artificial element in
the initial solution. In each iteration we need to construct S(B), find a
minimum weight s-d dipath, and update the variables D(vi). Recall that
IEI = n, and c represents the time required to find the circuit of I U {e'} in
M (or show that none exists), where I C_ E is independent and e' E E -.

To construct S(B) for the problem (PI H), E _ H . F, we solve the
following circuit recognition problem for each e' e H - B: Check whether
B u {e') is dependent in M(H), and, if it is, find the unique circuit of B u {e'}.
This task requires time c for each ee H - B. So the complexity of
constructing S(B) is 0(nc). In some instances it is possible to speed up the
construction of S(B), as not all parallel arcs need to be constructed, but only
the shortest. An example of this will be given in Section 7.

Using the fast implementation of Fredman and Tarjan (see [FT]), the
complexity of finding a minimum weight s-d dipath by Dijkstra's algorithm
is at most O(p + m log m), where p is the cardinality of the set of arcs in
S(B).

Note that the variables D(v) needed in Theorem 6 are actually
computed in the course of finding a shortest s-d dipath. Thus, no extra
computations are needed. Also, nc is larger than p. Therefore, the overall
complexity of the algorithm is 0(r(nc + m log m)).

*,1
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5. Improved Starting Solution and Variants of the Algorithm.

In this section we provide two variants of our algorithm. Although
they do not improve our complexity bounds, they may yield a more successful
implementation. Let B' be a minimum weight base of M, found using the
greedy algorithm. Both variants use B' to obtain a full starting base B
instead of the initial solution Bo to which artificials are appended.

In the first variant we make copies of selected elements of B' which
replace their counterparts, thereby producing a base B that is feasible for
(P) relative to an extended matroid. The copies, labeled artificial elements,
are assigned to the sets E, E2, ... , Em by the following rules so that the
cardinality restrictions are satisfied.

Initialize with B = B'. For any pair {i, j) such that Ii > 1B n Ei and
u<B Ejj, define ai to be a copy of ej, the maximum weight element in
B n Ej. Assign the artificial element a1 to Ei with w(ai) = w(ej), and
replace B with (B - {ej)) u (ai). Extend M so that I u (a ) is independent in
the extended matroid if and only if I u {ej} is independent in M.

Once no more pairs {i, j} of this form exist, select a pair such that
Ii > IB11r EI and 1j < B n Ejl or such that ui > IBn1 Eil and uj < IB Ej. (If none I %

remain, all cardinality constraints are satisfied, or (P) has no feasible
solution.) Then create the artificial element a i and change B and M as %
above.

One advantage of this variant is that, in the process of eliminating an
artificial element by solving a minimum weight s-d dipath problem, it is
possible that one or more other artificials may leave B, in which case they
can be dropped from the problem and disregarded thereafter. Thus, fewer N
state digraphs may be needed to eliminate the artificial elements. A simple
version of this variant, one in which all artificial elements are assigned the
same weight, is used in Section 7 for the special case in which M is a
graphic matroid.

i ...

iS
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The second variant replaces the bounds for the cardinality constraints

by relaxed bounds that are progressively tightened until the original bounds

are achieved. Begin with the base B = B', and, for each B subsequently
generated, define ui' = max(u i, IB n Eil} and Ii' = min{I i, IB n Eil}. Once ui' = ui
and .' = li for i - 1, 2, ..., m, problem (P) is solved. Otherwise, identify a
pair {i, j) by the rules of the preceeding variant and create a single
artificial a1 to replace an element ej e B, thus increasing li' by 1 or

decreasing uj' by 1, or both. Then eliminate cz by solving a minimum
weight s-d dipath problem and repeat. A noteworthy feature of this variant
is that B never contains an artificial element except as a device for
creating an appropriately defined minimum weight dipath problem.

Our results lead to another postoptimization procedure, in addition to
that given by Theorem 4, for finding a new optimal solution when element
weights are perturbed. The basic steps of this postoptimizing method are as

follows. Of the elements with new weights, first consider only those in the
set R defined to consist of: (1) elements in B whose weights are
decreased, and (2) elements not in B whose weights are increased. The
problem in which only the elements of R receive their new weights is still
solved optimally by the current solution. Correspondingly, update the

distances D(vi) for the minimum weight dipath tree created at the last
iteration of solving (P).

Now consider one at a time each remaining element whose weight is to

be changed. If the element is in B, solve the minimum weight dipath problem
that treats this element precisely as if it were an artificial element with
the new given weight. If the element is not in B, determine the effect of
forcing it to become part of B by solving an analogously defined minimum
weight dipath problem: Let ej' denote the element under consideration.

Replace arcs of the form a(e', ei) in S(B) with arcs a(s, ei) in S*(B), and
replace arcs of the form a(e i, ej') in S(B) with arcs a(e i, d) in S°(B).

.5
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Our previous results hold for both cases, and, hence reduced arc
weights obtained after the minimum weight dipath problem has been solved,
and B is changed, will remain nonnegative. Thus, upon giving the element
its new weight, if the resulting solution has a smaller weight than B, the
new solution is kept. However, if the there is no improvement, or if no
s-d dipath exists, B is unchanged.

It is, of course, unnecessary to solve the minimum weight dipath
problem if, on tentatively assigning an element its new weight, the reduced
weights for all arcs associated with the element are nonpositive when the
element is in B and nonnegative when the element is not in B. In addition,
when the current base B is replaced with a new one, some elements not yet
assigned their new weights may enter or leave B. These may automatically
be given their new weights, since they correspond to elements of R for the
current iteration. As this occurs, minimum weight dipath distances are
updated accordingly in the minimum weight dipath tree.

This process solves at most one minimum weight dipath problem for
each element whose weight changes (excluding those in the original and '
subsequent sets R). Hence, the work is at most O(nc + m log m) for each
perturbed weight; so we have an efficient postoptimizing procedure when
the number of such elements is small.

,1,

6. Weighted bipartite matching.

Consider a graph G = (V, E) and a weight function w: E - R. The
matching problem consists of finding a minimum weight subset F C E such
that each node of V is incident with exactly one member of F. In this
section we assume that G is a bipartite graph where the partition

V1 u V2 1 V is such that lI IV21. The weighted bipartite matching
problem, also called the assignment problem, is a special instance of
problem (P) where the partition of E is induced by the nodes of V2.

2*1
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Specifically, e e Ei if and only if it is incident with node vi e V2. For each

i, 1i = Ui = 1. The matroid M is also a partition matroid, namely the one
induced by the node set V.

For this problem r = IVI/2, n = JEl, and m = IVI/2. To obtain the

complexity of our algorithm for this problem, we have to determine the
complexity of constructing S(B). Note that the circuits of M have length 2;
so the number of forward arcs of S(B) is at most IEI. Similarly, there are at
most IEI backward arcs.

Thus, the construction of S(B) requires time O(IEI). Since the
Fredman Tarjan algorithm finds the minimum weight dipath in time
O(IEI + IVI log JlV), the overall complexity is O(IV IEI + IV12 log IVJ).

Note that our algorithm is closely related to the usual augmenting path
algorithm. Although this algorithm and the associated bound are not new, it
is interesting that they are obtained using the state digraph approach. Recall
that the general matroid intersection algorithm only gives the bound
O(IVl 2 lEt).

7. Minimum spanning trees.

Let G = (V, E) be a connected graph, with E, E2, .... Em a general
partition of the edge set, and let each edge of G be assigned a weight. For
i = 1, 2, ... , m assign two integers li and ui, where 11< ui. In this section, we
consider the problem of finding a minimum weight spanning tree B c E with
the restriction that Ii < lB r) E1 < ui, for i = i, 2, ..., m. The minimum spanning
tree problem with restrictions on the number of edges in each Ei is an
instance of (P): M is the graphic matroid defined on the edge set E, and the

generalized partition matroid is induced by the partition of E. We will refer
to E1, E2, ..., Em as the m color classes.

50
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An interesting feature of this instance is that, by using the special
structure of the tree, we do not need to construct the entire state graph
S(B). However, our method requires that we work with spanning trees. So,
instead of simply extending the graphic matroid M to M(F) as described in
Section 3, create an artificial edge in G for each artificial element so that
the resulting first solution, Bo u A, is a spanning tree in the extended graph
G* = (V, E u A). This is an application of our first variant in Section 5.

We now outline a procedure for constructing the state graph S(B). For
each color i, label each e e B with the edge f e E - B of color i that gives
the smallest weight B-swap (e, f). Thus, we will find the minimum weight
arc in S(B) from vi to vj for each pair (vi, vj) of states.

Begin by sorting the edges in each color class in ascending order by
weight. At worst, this work is O(!EI log IVI). Note that we need to sort the
edge weights only once since the reduced weights only add a constant to all
the edges in the same color class. At each iteration of our algorithm, in the
construction of each new state graph, proceed as follows:

1. Set up (or update) the current tree B with an arbitrary root and
predecessor indexing.

2. For i = 1, 2, ..., m, start with all edges in B unlabeled. Examine the edges
f = (x, y) of color i in E - B in ascending weight order. Find the first
common ancestor of x and y in B, and label each unlabeled edge of B in
the cycle of B u (f} with f. Stop the labeling procedure for color i when
either all tree edges have been labeled, or all edges of color i in E - B have
been examined.

Since we examine the edges of color i in E - B in ascending weight

order, each edge of B will be labeled with the edge of E - B which results
in the least weight B-swap. Using the set merging technique of Gabow and
Tarjan (see [GT2]), O(EI + IVI) work is required for this labeling procedure
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for each color. So the complexity of the construction of each state graph is

O(IEI + m lvi). The complexity due to the Fredman-Tarjan minimum weight

dipath algorithm is at most O(m2), and the graphic matroid has rank at most
IVI - 1. Hence, the overall complexity is O(IV m2 + Ilvi fE + m 1V12). Note that aa

the O(IEI log IVI) work required for sorting the elements in each color class
is dominated by this complexity.

We note that, for small values of m, much faster algorithms are
known. For m = 1, the problem is nothing but the classical minimum
spanning tree problem, and there is an algorithm of complexity
O(IEI log log IVI) due to Yao ([Y]). More recent developments can be found in
[GGST]. For m = 2, the bound 0(a + IVI log IVI) has been achieved by Gabow
and Tarjan ([GT1]), where a denotes the complexity of finding a minimum
spanning tree.

Let V* = {up, 2 ..., "Um-1) be a stable set of G; that is, no edge of E
has both endpoints in V*. For i = 1, 2, ..., m-1, let Ei denote the set of edges
which are incident with node ui in G, and let Em be the set of remaining
edges. In this case the O(m2 ) due to the Fredman-Tarjan minimum weight
dipath algorithm is dominated by the complexity of constructing the state
graph. Hence, the overall complexity is O(IV IEI + m IV12).

In the special stable set case where Ii = ui = 2 for i = 1, 2 ... , m-1, and

Im = 0 and Urn = IVI - 2m + 1, the greedy phase of finding a starting solution
Bo can substantially reduce the number of iterations needed. For
i = 1, 2, ... , m-1, add a constant ci to the weights of the edges incident with

* node u E V*. We assign large enough values to the constants so that the
greedy phase will first choose IVl - 2m + 1 edges in Em to construct the
spanning tree. Let w be the weight of the last edge added. For
i = 1, 2, ...., m-, we adjust the constant ci so that the minimum weight ec~ge

, incident with ui has weight w and, therefore, can be chosen next in the
greedy phase.
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This extended greedy solution B0 contains IVI - m edges, so only
m - 1 artificial elements are needed. They can be chosen so that B0 u A is a
tree having degree 2 at each of the nodes of V*. Furthermore, if the
weights of the artificial elements are chosen small enough, B0 u A is an
optimum solution of (PI E u A) and, therefore, a valid start for our dual
algorithm. Hence, only m - 1 iterations of the algorithm are needed. This
yields an algorithm of complexity O(m(iEI + m iVI) + IEI log IVi). (Note that the
sorting-time complexity is not dominated in this case.)

In this case (P) is the problem of finding the minimum weight spanning
tree in G such that every node in V* is adjacent to exactly two edges of
the tree. Such a spanning tree is a relaxation of a hamiltonian path, namely,
a simple path which contains each node of G.

Consider the following variant of spanning trees. A 1-tree is a graph
with nodes (1, 2, ..., Il}V consisting of a spanning tree on {2, 3, ..., Il}V
together with two edges incident with node 1. The traveling salesman
problem on G - (V, E) seeks a minimum weight tour, a cycle which passes
through each node exactly once. Observing that a tour is precisely a 1-tree
in which each node has degree 2, Held and Karp explored approaches to the
traveling salesman problem which involve 1-tree relaxations (see [HK1] and
[HK2]).

Our technique permits a generalization of Held and Karp's method to
yield a constrained 1-tree as follows. Suppose the nodes are indexed so that
{1, 2, ..., m-11 is a stable set of G, and let V* = {2,3, ..., m-1). Then, instead
of using a general spanning tree on (2, 3, ..., IVi, find a minimum weight
spanning tree such that every node in V* has degree 2. Add the two edges
incident with node 1 of minimum weight. Clearly, this constrained 1-tree

is still a relaxation of a minimum weight tour. It is tighter than the 1-tree
relaxation, which is obtained when V* = 0. Recently, however, [LR] have
shown that the lagrangian duals based on these two relaxations have the
same value. Next, we consider a further strengthening of the 1-tree
relaxation.

4i
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Define the star of a node to be the set of edges incident with that
node. Suppose the nodes are ordered from 1 to IVI. For node 1 define its
net star to be its star. Then, for i = 2, 3, ..., IVI, define the net star of node
i to be its star, excluding edges which appear in the stars of nodes
1, 2, ... i-!.

Consider the following constrained spanning tree problem. For each
node i, let ri be the number of edges deleted from its star to create its net
star. Then we can stipulate that the spanning tree on {2, 3, ..., IVII must
contain at least max{O, 2 - r} and at most 2 edges from the net star of each
node i > 2. When (1, 2, ..., m-11 is a stable set of G, as we assumed earlier,
this procedure introduces additional constraints to the requirement that
every node in V* has degree 2. This is a valid relaxation of the traveling
salesman problem even if (1, 2, ..., m-i is not a stable set. The cardinality
restriction on the net stars can be imposed on all the nodes {2, 3,..., IVI or
simply on a subset, say {2, 3, ..., m-1). The complexity of the algorithm in

this case is still O(IVI lEl + M 1V12).

There may be merit in choosing net stars adaptively, in succession.
Consider first solving the spanning tree problem, selecting as node 2 one
whose net star constraint is violated, and then solving (P) as if E and its
complement are the only two sets to consider. Then select as node 3 one
whose net star constraint is now violated (the net stars changing as new
nodes are selected), and now solve (P) as defined by E2, E3, and all remaining
edges. Repeat this process until no net star constraint is violated. Note that
the net star selected at each step may be determined according to some
measure of constraint violation.

At each iteration the state digraph is obtained by splitting a node, say

vk, into two new nodes. Using D(vk) for each new node guarantees
nonnegative reduced costs, so that the Fredman Tarjan algorithm can be used

to solve the resulting minimum weight dipath problems. These observations
" also provide an alternative solution method for the general matroid problem

in which the sets Ei are fixed beforehand. Using the above technique, these

,.o
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sets can be incorporated successively into the solution in any chosen
sequence. We note that the complexity bounds for this procedure are the
same as the bounds for the procedures that consider all sets simultaneously.
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